BrainGrid

Technical Specification

Production-ready implementation of InvisPose - a revolutionary WiFi-based dense human pose estimation system that enables real-time full-body tracking through walls using commodity mesh routers

Used in: 1 reposUpdated: recently

Technical Specification

#WiFi-DensePose System

#Document Information

  • Version: 1.0
  • Date: 2025-01-07
  • Project: InvisPose - WiFi-Based Dense Human Pose Estimation
  • Status: Draft

#1. Introduction

#1.1 Purpose

This document provides detailed technical specifications for the WiFi-DensePose system implementation, including architecture design, component interfaces, data structures, and implementation strategies.

#1.2 Scope

The technical specification covers system architecture, neural network design, data processing pipelines, API implementation, hardware interfaces, and deployment considerations.

#1.3 Technical Overview

The system employs a modular architecture with five primary components: Hardware Interface Layer, Neural Network Pipeline, Pose Estimation Engine, API Services, and Configuration Management.


#2. System Architecture

#2.1 High-Level Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   WiFi Routers  │    │  CSI Receiver   │    │ Neural Network  │
│   (Hardware)    │───▶│    Module       │───▶│    Pipeline     │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                                                        │
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Web Dashboard │◄───│  API Services   │◄───│ Pose Estimation │
│   (Frontend)    │    │    Module       │    │     Engine      │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                                │
                       ┌─────────────────┐
                       │ Configuration   │
                       │   Management    │
                       └─────────────────┘

#2.2 Component Architecture

2.2.1 Hardware Interface Layer

Purpose: Interface with WiFi hardware for CSI data extraction Components:

  • CSI Data Collector
  • Router Communication Manager
  • Signal Preprocessor
  • Data Stream Manager

Technology Stack:

  • Python 3.8+ with asyncio for concurrent processing
  • Socket programming for UDP data streams
  • NumPy for signal processing operations
  • Threading for parallel data collection

2.2.2 Neural Network Pipeline

Purpose: Transform CSI signals to pose estimates Components:

  • Modality Translation Network
  • DensePose Estimation Network
  • Feature Fusion Module
  • Temporal Consistency Filter

Technology Stack:

  • PyTorch 1.12+ for deep learning framework
  • CUDA 11.6+ for GPU acceleration
  • TorchVision for computer vision utilities
  • OpenCV for image processing operations

2.2.3 Pose Estimation Engine

Purpose: Orchestrate end-to-end processing pipeline Components:

  • Pipeline Coordinator
  • Multi-Person Tracker
  • Performance Monitor
  • Error Recovery Manager

Technology Stack:

  • Python asyncio for asynchronous processing
  • Threading and multiprocessing for parallelization
  • Queue management for data flow control
  • Logging framework for monitoring

2.2.4 API Services Module

Purpose: Provide external interfaces and streaming Components:

  • FastAPI REST Server
  • WebSocket Manager
  • Streaming Service
  • Authentication Handler

Technology Stack:

  • FastAPI 0.95+ for REST API framework
  • WebSockets for real-time communication
  • FFmpeg for video encoding
  • Pydantic for data validation

2.2.5 Configuration Management

Purpose: Handle system configuration and templates Components:

  • Configuration Parser
  • Template Manager
  • Validation Engine
  • Runtime Configuration

Technology Stack:

  • YAML for configuration files
  • JSON Schema for validation
  • File system monitoring for dynamic updates
  • Environment variable integration

#2.3 Data Flow Architecture

CSI Raw Data → Preprocessing → Neural Network → Post-processing → Output
     │              │              │               │             │
     ▼              ▼              ▼               ▼             ▼
  UDP Stream    Signal Clean   Feature Extract   Tracking    API/Stream
  Buffer Mgmt   Calibration    Pose Estimation   Smoothing   Distribution
  Error Handle  Noise Filter   Multi-Person      ID Assign   Visualization

#3. Neural Network Design

#3.1 Modality Translation Network

3.1.1 Architecture Overview

Input: CSI tensor (3×3×N) where N is temporal window Output: Spatial features (720×1280×3) compatible with DensePose

Network Structure:

1class ModalityTranslationNetwork(nn.Module):
2    def __init__(self):
3        # Amplitude branch encoder
4        self.amplitude_encoder = nn.Sequential(
5            nn.Conv1d(9, 64, kernel_size=3, padding=1),
6            nn.BatchNorm1d(64),
7            nn.ReLU(),
8            nn.Conv1d(64, 128, kernel_size=3, padding=1),
9            nn.BatchNorm1d(128),
10            nn.ReLU(),
11            nn.AdaptiveAvgPool1d(256)
12        )
13        
14        # Phase branch encoder
15        self.phase_encoder = nn.Sequential(
16            nn.Conv1d(9, 64, kernel_size=3, padding=1),
17            nn.BatchNorm1d(64),
18            nn.ReLU(),
19            nn.Conv1d(64, 128, kernel_size=3, padding=1),
20            nn.BatchNorm1d(128),
21            nn.ReLU(),
22            nn.AdaptiveAvgPool1d(256)
23        )
24        
25        # Feature fusion and upsampling
26        self.fusion_network = nn.Sequential(
27            nn.Linear(512, 1024),
28            nn.ReLU(),
29            nn.Linear(1024, 720*1280*3),
30            nn.Sigmoid()
31        )

3.1.2 CSI Preprocessing Pipeline

Phase Unwrapping Algorithm:

1def unwrap_phase(phase_data):
2    """
3    Unwrap CSI phase data to remove 2π discontinuities
4    """
5    unwrapped = np.unwrap(phase_data, axis=-1)
6    # Apply linear detrending
7    detrended = signal.detrend(unwrapped, axis=-1)
8    # Temporal filtering
9    filtered = apply_moving_average(detrended, window=5)
10    return filtered
11
12def apply_moving_average(data, window=5):
13    """
14    Apply moving average filter for noise reduction
15    """
16    kernel = np.ones(window) / window
17    return np.convolve(data, kernel, mode='same')

Amplitude Processing:

1def process_amplitude(amplitude_data):
2    """
3    Process CSI amplitude data for neural network input
4    """
5    # Convert to dB scale
6    amplitude_db = 20 * np.log10(np.abs(amplitude_data) + 1e-10)
7    # Normalize to [0, 1] range
8    normalized = (amplitude_db - amplitude_db.min()) / (amplitude_db.max() - amplitude_db.min())
9    return normalized

3.1.3 Feature Fusion Strategy

Fusion Architecture:

  • Concatenate amplitude and phase features
  • Apply fully connected layers for dimension reduction
  • Use residual connections for gradient flow
  • Apply dropout for regularization

#3.2 DensePose Integration

3.2.1 Network Adaptation

Base Architecture: DensePose-RCNN with ResNet-FPN backbone Modifications:

  • Replace RGB input with WiFi-translated features
  • Adapt feature pyramid network for WiFi domain
  • Modify region proposal network for WiFi characteristics
  • Fine-tune detection heads for WiFi-specific patterns

3.2.2 Transfer Learning Framework

Teacher-Student Architecture:

1class TransferLearningFramework:
2    def __init__(self):
3        self.teacher_model = load_pretrained_densepose()
4        self.student_model = WiFiDensePoseModel()
5        self.translation_network = ModalityTranslationNetwork()
6    
7    def knowledge_distillation_loss(self, wifi_features, image_features):
8        """
9        Compute knowledge distillation loss between teacher and student
10        """
11        teacher_output = self.teacher_model(image_features)
12        student_output = self.student_model(wifi_features)
13        
14        # Feature matching loss
15        feature_loss = F.mse_loss(student_output.features, teacher_output.features)
16        
17        # Pose estimation loss
18        pose_loss = F.cross_entropy(student_output.poses, teacher_output.poses)
19        
20        return feature_loss + pose_loss

#3.3 Multi-Person Tracking

3.3.1 Tracking Algorithm

Hungarian Algorithm Implementation:

1class MultiPersonTracker:
2    def __init__(self, max_persons=5):
3        self.max_persons = max_persons
4        self.active_tracks = {}
5        self.next_id = 1
6        
7    def update(self, detections):
8        """
9        Update tracks with new detections using Hungarian algorithm
10        """
11        if not self.active_tracks:
12            # Initialize tracks for first frame
13            return self.initialize_tracks(detections)
14        
15        # Compute cost matrix
16        cost_matrix = self.compute_cost_matrix(detections)
17        
18        # Solve assignment problem
19        assignments = self.hungarian_assignment(cost_matrix)
20        
21        # Update tracks
22        return self.update_tracks(detections, assignments)
23    
24    def compute_cost_matrix(self, detections):
25        """
26        Compute cost matrix for track-detection assignment
27        """
28        costs = np.zeros((len(self.active_tracks), len(detections)))
29        
30        for i, track in enumerate(self.active_tracks.values()):
31            for j, detection in enumerate(detections):
32                # Compute distance-based cost
33                distance = np.linalg.norm(track.position - detection.position)
34                # Add appearance similarity cost
35                appearance_cost = 1 - self.compute_appearance_similarity(track, detection)
36                costs[i, j] = distance + appearance_cost
37        
38        return costs

3.3.2 Kalman Filtering

State Prediction Model:

1class KalmanTracker:
2    def __init__(self):
3        # State vector: [x, y, vx, vy, ax, ay]
4        self.state = np.zeros(6)
5        
6        # State transition matrix
7        self.F = np.array([
8            [1, 0, 1, 0, 0.5, 0],
9            [0, 1, 0, 1, 0, 0.5],
10            [0, 0, 1, 0, 1, 0],
11            [0, 0, 0, 1, 0, 1],
12            [0, 0, 0, 0, 1, 0],
13            [0, 0, 0, 0, 0, 1]
14        ])
15        
16        # Measurement matrix
17        self.H = np.array([
18            [1, 0, 0, 0, 0, 0],
19            [0, 1, 0, 0, 0, 0]
20        ])
21        
22        # Process and measurement noise
23        self.Q = np.eye(6) * 0.1  # Process noise
24        self.R = np.eye(2) * 1.0  # Measurement noise
25        self.P = np.eye(6) * 100  # Initial covariance
26    
27    def predict(self):
28        """Predict next state"""
29        self.state = self.F @ self.state
30        self.P = self.F @ self.P @ self.F.T + self.Q
31        return self.state[:2]  # Return position
32    
33    def update(self, measurement):
34        """Update state with measurement"""
35        y = measurement - self.H @ self.state
36        S = self.H @ self.P @ self.H.T + self.R
37        K = self.P @ self.H.T @ np.linalg.inv(S)
38        
39        self.state = self.state + K @ y
40        self.P = (np.eye(6) - K @ self.H) @ self.P

#4. Hardware Interface Implementation

#4.1 CSI Data Collection

4.1.1 Router Communication Protocol

UDP Socket Implementation:

1class CSIReceiver:
2    def __init__(self, port=5500, buffer_size=1024):
3        self.port = port
4        self.buffer_size = buffer_size
5        self.socket = None
6        self.running = False
7        
8    async def start_collection(self):
9        """Start CSI data collection"""
10        self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
11        self.socket.bind(('0.0.0.0', self.port))
12        self.socket.setblocking(False)
13        self.running = True
14        
15        while self.running:
16            try:
17                data, addr = await asyncio.wait_for(
18                    self.socket.recvfrom(self.buffer_size), 
19                    timeout=1.0
20                )
21                await self.process_csi_packet(data, addr)
22            except asyncio.TimeoutError:
23                continue
24            except Exception as e:
25                logger.error(f"CSI collection error: {e}")
26    
27    async def process_csi_packet(self, data, addr):
28        """Process incoming CSI packet"""
29        try:
30            csi_data = self.parse_csi_packet(data)
31            await self.data_queue.put(csi_data)
32        except Exception as e:
33            logger.error(f"CSI parsing error: {e}")

4.1.2 CSI Packet Parsing

Atheros CSI Format:

1class AtheriosCSIParser:
2    def __init__(self):
3        self.packet_format = struct.Struct('<HHHHH')  # Header format
4        
5    def parse_packet(self, raw_data):
6        """Parse Atheros CSI packet format"""
7        if len(raw_data) < 10:  # Minimum header size
8            raise ValueError("Packet too short")
9        
10        # Parse header
11        header = self.packet_format.unpack(raw_data[:10])
12        timestamp, length, rate, channel, rssi = header
13        
14        # Extract CSI data
15        csi_start = 10
16        csi_length = length - 10
17        csi_raw = raw_data[csi_start:csi_start + csi_length]
18        
19        # Parse complex CSI values
20        csi_complex = self.parse_complex_csi(csi_raw)
21        
22        return {
23            'timestamp': timestamp,
24            'channel': channel,
25            'rssi': rssi,
26            'csi_data': csi_complex,
27            'amplitude': np.abs(csi_complex),
28            'phase': np.angle(csi_complex)
29        }
30    
31    def parse_complex_csi(self, csi_raw):
32        """Parse complex CSI values from raw bytes"""
33        # Atheros format: 3x3 MIMO, 56 subcarriers
34        num_subcarriers = 56
35        num_antennas = 9  # 3x3 MIMO
36        
37        csi_complex = np.zeros((num_antennas, num_subcarriers), dtype=complex)
38        
39        for i in range(num_antennas):
40            for j in range(num_subcarriers):
41                idx = (i * num_subcarriers + j) * 4  # 4 bytes per complex value
42                if idx + 4 <= len(csi_raw):
43                    real = struct.unpack('<h', csi_raw[idx:idx+2])[0]
44                    imag = struct.unpack('<h', csi_raw[idx+2:idx+4])[0]
45                    csi_complex[i, j] = complex(real, imag)
46        
47        return csi_complex

#4.2 Signal Processing Pipeline

4.2.1 Real-Time Processing

Streaming Data Processor:

1class StreamingProcessor:
2    def __init__(self, window_size=100):
3        self.window_size = window_size
4        self.data_buffer = collections.deque(maxlen=window_size)
5        self.background_model = None
6        
7    async def process_stream(self, csi_data):
8        """Process streaming CSI data"""
9        # Add to buffer
10        self.data_buffer.append(csi_data)
11        
12        if len(self.data_buffer) < self.window_size:
13            return None  # Wait for sufficient data
14        
15        # Extract current window
16        window_data = np.array(list(self.data_buffer))
17        
18        # Apply preprocessing
19        processed_data = self.preprocess_window(window_data)
20        
21        # Background subtraction
22        if self.background_model is not None:
23            processed_data = processed_data - self.background_model
24        
25        return processed_data
26    
27    def preprocess_window(self, window_data):
28        """Apply preprocessing to data window"""
29        # Phase unwrapping
30        phase_data = np.angle(window_data)
31        unwrapped_phase = np.unwrap(phase_data, axis=-1)
32        
33        # Amplitude processing
34        amplitude_data = np.abs(window_data)
35        amplitude_db = 20 * np.log10(amplitude_data + 1e-10)
36        
37        # Temporal filtering
38        filtered_amplitude = self.apply_temporal_filter(amplitude_db)
39        filtered_phase = self.apply_temporal_filter(unwrapped_phase)
40        
41        # Combine amplitude and phase
42        processed = np.stack([filtered_amplitude, filtered_phase], axis=-1)
43        
44        return processed

4.2.2 Background Subtraction

Adaptive Background Model:

1class AdaptiveBackgroundModel:
2    def __init__(self, learning_rate=0.01):
3        self.learning_rate = learning_rate
4        self.background = None
5        self.variance = None
6        
7    def update_background(self, csi_data):
8        """Update background model with new data"""
9        if self.background is None:
10            self.background = csi_data.copy()
11            self.variance = np.ones_like(csi_data)
12            return
13        
14        # Exponential moving average
15        self.background = (1 - self.learning_rate) * self.background + \
16                         self.learning_rate * csi_data
17        
18        # Update variance estimate
19        diff = csi_data - self.background
20        self.variance = (1 - self.learning_rate) * self.variance + \
21                       self.learning_rate * (diff ** 2)
22    
23    def subtract_background(self, csi_data):
24        """Subtract background from CSI data"""
25        if self.background is None:
26            return csi_data
27        
28        # Subtract background
29        foreground = csi_data - self.background
30        
31        # Normalize by variance
32        normalized = foreground / (np.sqrt(self.variance) + 1e-10)
33        
34        return normalized

#5. API Implementation

#5.1 REST API Architecture

5.1.1 FastAPI Server Implementation

Main Server Structure:

1from fastapi import FastAPI, WebSocket, HTTPException
2from fastapi.middleware.cors import CORSMiddleware
3import asyncio
4
5app = FastAPI(title="WiFi-DensePose API", version="1.0.0")
6
7# CORS middleware
8app.add_middleware(
9    CORSMiddleware,
10    allow_origins=["*"],
11    allow_credentials=True,
12    allow_methods=["*"],
13    allow_headers=["*"],
14)
15
16# Global state
17pose_estimator = None
18websocket_manager = WebSocketManager()
19
20@app.on_event("startup")
21async def startup_event():
22    """Initialize system on startup"""
23    global pose_estimator
24    pose_estimator = PoseEstimator()
25    await pose_estimator.initialize()
26
27@app.get("/pose/latest")
28async def get_latest_pose():
29    """Get latest pose estimation results"""
30    if pose_estimator is None:
31        raise HTTPException(status_code=503, detail="System not initialized")
32    
33    latest_pose = await pose_estimator.get_latest_pose()
34    if latest_pose is None:
35        raise HTTPException(status_code=404, detail="No pose data available")
36    
37    return {
38        "timestamp": latest_pose.timestamp,
39        "persons": [person.to_dict() for person in latest_pose.persons],
40        "metadata": latest_pose.metadata
41    }
42
43@app.get("/pose/history")
44async def get_pose_history(
45    start_time: Optional[datetime] = None,
46    end_time: Optional[datetime] = None,
47    limit: int = 100
48):
49    """Get historical pose data"""
50    history = await pose_estimator.get_pose_history(
51        start_time=start_time,
52        end_time=end_time,
53        limit=limit
54    )
55    
56    return {
57        "poses": [pose.to_dict() for pose in history],
58        "count": len(history)
59    }

5.1.2 WebSocket Implementation

Real-Time Streaming:

1class WebSocketManager:
2    def __init__(self):
3        self.active_connections: List[WebSocket] = []
4        self.connection_info: Dict[WebSocket, dict] = {}
5    
6    async def connect(self, websocket: WebSocket, client_info: dict):
7        """Accept new WebSocket connection"""
8        await websocket.accept()
9        self.active_connections.append(websocket)
10        self.connection_info[websocket] = client_info
11        logger.info(f"Client connected: {client_info}")
12    
13    def disconnect(self, websocket: WebSocket):
14        """Remove WebSocket connection"""
15        if websocket in self.active_connections:
16            self.active_connections.remove(websocket)
17            del self.connection_info[websocket]
18    
19    async def broadcast_pose_data(self, pose_data: dict):
20        """Broadcast pose data to all connected clients"""
21        if not self.active_connections:
22            return
23        
24        message = {
25            "type": "pose_update",
26            "data": pose_data,
27            "timestamp": datetime.utcnow().isoformat()
28        }
29        
30        # Send to all connections
31        disconnected = []
32        for connection in self.active_connections:
33            try:
34                await connection.send_json(message)
35            except Exception as e:
36                logger.error(f"WebSocket send error: {e}")
37                disconnected.append(connection)
38        
39        # Clean up disconnected clients
40        for connection in disconnected:
41            self.disconnect(connection)
42
43@app.websocket("/ws/pose")
44async def websocket_pose_endpoint(websocket: WebSocket):
45    """WebSocket endpoint for real-time pose data"""
46    client_info = {
47        "client_ip": websocket.client.host,
48        "connect_time": datetime.utcnow()
49    }
50    
51    await websocket_manager.connect(websocket, client_info)
52    
53    try:
54        while True:
55            # Keep connection alive and handle client messages
56            data = await websocket.receive_text()
57            # Process client commands if needed
58            await handle_websocket_command(websocket, data)
59    except Exception as e:
60        logger.error(f"WebSocket error: {e}")
61    finally:
62        websocket_manager.disconnect(websocket)

#5.2 External Integration APIs

5.2.1 MQTT Integration

MQTT Publisher Implementation:

1import paho.mqtt.client as mqtt
2import json
3
4class MQTTPublisher:
5    def __init__(self, broker_host, broker_port=1883):
6        self.broker_host = broker_host
7        self.broker_port = broker_port
8        self.client = mqtt.Client()
9        self.connected = False
10        
11    async def connect(self):
12        """Connect to MQTT broker"""
13        def on_connect(client, userdata, flags, rc):
14            if rc == 0:
15                self.connected = True
16                logger.info("Connected to MQTT broker")
17            else:
18                logger.error(f"MQTT connection failed: {rc}")
19        
20        def on_disconnect(client, userdata, rc):
21            self.connected = False
22            logger.info("Disconnected from MQTT broker")
23        
24        self.client.on_connect = on_connect
25        self.client.on_disconnect = on_disconnect
26        
27        try:
28            self.client.connect(self.broker_host, self.broker_port, 60)
29            self.client.loop_start()
30        except Exception as e:
31            logger.error(f"MQTT connection error: {e}")
32    
33    async def publish_pose_data(self, pose_data):
34        """Publish pose data to MQTT topics"""
35        if not self.connected:
36            return
37        
38        # Publish individual person data
39        for person in pose_data.persons:
40            topic = f"wifi-densepose/pose/person/{person.id}"
41            payload = {
42                "id": person.id,
43                "keypoints": person.keypoints,
44                "confidence": person.confidence,
45                "timestamp": pose_data.timestamp
46            }
47            
48            self.client.publish(topic, json.dumps(payload))
49        
50        # Publish summary data
51        summary_topic = "wifi-densepose/summary"
52        summary_payload = {
53            "person_count": len(pose_data.persons),
54            "timestamp": pose_data.timestamp,
55            "processing_time": pose_data.metadata.get("processing_time", 0)
56        }
57        
58        self.client.publish(summary_topic, json.dumps(summary_payload))

5.2.2 Webhook Integration

Webhook Delivery System:

1import aiohttp
2import asyncio
3from typing import List, Dict
4
5class WebhookManager:
6    def __init__(self):
7        self.webhooks: List[Dict] = []
8        self.session = None
9        
10    async def initialize(self):
11        """Initialize HTTP session"""
12        self.session = aiohttp.ClientSession()
13    
14    def add_webhook(self, url: str, events: List[str], auth: Dict = None):
15        """Add webhook configuration"""
16        webhook = {
17            "url": url,
18            "events": events,
19            "auth": auth,
20            "retry_count": 0,
21            "max_retries": 3
22        }
23        self.webhooks.append(webhook)
24    
25    async def send_webhook(self, event_type: str, data: Dict):
26        """Send webhook notifications for event"""
27        relevant_webhooks = [
28            wh for wh in self.webhooks 
29            if event_type in wh["events"]
30        ]
31        
32        tasks = []
33        for webhook in relevant_webhooks:
34            task = asyncio.create_task(
35                self._deliver_webhook(webhook, event_type, data)
36            )
37            tasks.append(task)
38        
39        if tasks:
40            await asyncio.gather(*tasks, return_exceptions=True)
41    
42    async def _deliver_webhook(self, webhook: Dict, event_type: str, data: Dict):
43        """Deliver individual webhook with retry logic"""
44        payload = {
45            "event": event_type,
46            "timestamp": datetime.utcnow().isoformat(),
47            "data": data
48        }
49        
50        headers = {"Content-Type": "application/json"}
51        
52        # Add authentication if configured
53        if webhook.get("auth"):
54            auth = webhook["auth"]
55            if auth.get("type") == "bearer":
56                headers["Authorization"] = f"Bearer {auth['token']}"
57            elif auth.get("type") == "basic":
58                # Handle basic auth
59                pass
60        
61        for attempt in range(webhook["max_retries"]):
62            try:
63                async with self.session.post(
64                    webhook["url"],
65                    json=payload,
66                    headers=headers,
67                    timeout=aiohttp.ClientTimeout(total=10)
68                ) as response:
69                    if response.status < 400:
70                        logger.info(f"Webhook delivered: {webhook['url']}")
71                        return
72                    else:
73                        logger.warning(f"Webhook failed: {response.status}")
74                        
75            except Exception as e:
76
77logger.error(f"Webhook delivery failed: {e}")
78                await asyncio.sleep(2 ** attempt)  # Exponential backoff
79        
80        logger.error(f"Webhook delivery failed after {webhook['max_retries']} attempts")

#6. Performance Requirements and Optimization

#6.1 System Performance Specifications

6.1.1 Processing Performance

Real-Time Processing Requirements:

  • End-to-End Latency: <100ms (95th percentile)
  • Processing Throughput: 10-30 FPS depending on hardware configuration
  • Memory Usage: <4GB RAM for standard operation
  • GPU Memory: <2GB VRAM for neural network inference

Performance Scaling:

1class PerformanceManager:
2    def __init__(self):
3        self.performance_targets = {
4            "cpu_only": {"fps": 10, "latency_ms": 150},
5            "gpu_basic": {"fps": 20, "latency_ms": 100},
6            "gpu_high_end": {"fps": 30, "latency_ms": 75}
7        }
8        
9    def detect_hardware_capability(self):
10        """Detect available hardware and set performance targets"""
11        if torch.cuda.is_available():
12            gpu_memory = torch.cuda.get_device_properties(0).total_memory
13            if gpu_memory > 8e9:  # 8GB+
14                return "gpu_high_end"
15            else:
16                return "gpu_basic"
17        return "cpu_only"
18    
19    def optimize_for_hardware(self, capability):
20        """Optimize processing pipeline for detected hardware"""
21        targets = self.performance_targets[capability]
22        
23        # Adjust batch sizes
24        if capability == "gpu_high_end":
25            self.batch_size = 8
26            self.model_precision = torch.float16
27        elif capability == "gpu_basic":
28            self.batch_size = 4
29            self.model_precision = torch.float32
30        else:
31            self.batch_size = 1
32            self.model_precision = torch.float32

// TEST: Verify performance targets are met on different hardware configurations // TEST: Confirm automatic hardware detection and optimization // TEST: Validate memory usage stays within specified limits

6.1.2 Scalability Requirements

Concurrent Processing: Support multiple simultaneous operations

  • API Requests: 1000 concurrent REST API requests
  • WebSocket Connections: 100 simultaneous streaming clients
  • Data Processing: Parallel CSI stream processing
  • Storage Operations: Concurrent read/write operations

Resource Management:

1class ResourceManager:
2    def __init__(self, max_memory_gb=4, max_gpu_memory_gb=2):
3        self.max_memory = max_memory_gb * 1e9
4        self.max_gpu_memory = max_gpu_memory_gb * 1e9
5        self.memory_monitor = MemoryMonitor()
6        
7    async def monitor_resources(self):
8        """Continuously monitor system resources"""
9        while True:
10            memory_usage = self.memory_monitor.get_memory_usage()
11            gpu_usage = self.memory_monitor.get_gpu_memory_usage()
12            
13            if memory_usage > 0.9 * self.max_memory:
14                await self.trigger_memory_cleanup()
15            
16            if gpu_usage > 0.9 * self.max_gpu_memory:
17                await self.trigger_gpu_cleanup()
18            
19            await asyncio.sleep(5)  # Check every 5 seconds
20    
21    async def trigger_memory_cleanup(self):
22        """Trigger memory cleanup procedures"""
23        # Clear data buffers
24        self.data_buffer.clear_old_entries()
25        # Force garbage collection
26        gc.collect()
27        # Reduce batch sizes temporarily
28        self.reduce_batch_sizes()

// TEST: Verify system handles specified concurrent load // TEST: Confirm resource monitoring prevents memory exhaustion // TEST: Validate automatic resource cleanup procedures

#6.2 Neural Network Optimization

6.2.1 Model Optimization Techniques

Quantization: Reduce model size and improve inference speed

1class ModelOptimizer:
2    def __init__(self, model):
3        self.model = model
4        
5    def apply_quantization(self, quantization_type="dynamic"):
6        """Apply quantization to reduce model size"""
7        if quantization_type == "dynamic":
8            # Dynamic quantization for CPU inference
9            quantized_model = torch.quantization.quantize_dynamic(
10                self.model, 
11                {torch.nn.Linear, torch.nn.Conv2d}, 
12                dtype=torch.qint8
13            )
14        elif quantization_type == "static":
15            # Static quantization for better performance
16            quantized_model = self.apply_static_quantization()
17        
18        return quantized_model
19    
20    def apply_pruning(self, sparsity=0.3):
21        """Apply structured pruning to reduce model complexity"""
22        import torch.nn.utils.prune as prune
23        
24        for module in self.model.modules():
25            if isinstance(module, torch.nn.Conv2d):
26                prune.l1_unstructured(module, name='weight', amount=sparsity)
27        
28        return self.model

// TEST: Verify quantization maintains accuracy while improving speed // TEST: Confirm pruning reduces model size without significant accuracy loss // TEST: Validate optimization techniques work on target hardware

6.2.2 Inference Optimization

Batch Processing: Optimize throughput with intelligent batching

1class InferenceBatcher:
2    def __init__(self, max_batch_size=8, max_wait_time=0.01):
3        self.max_batch_size = max_batch_size
4        self.max_wait_time = max_wait_time
5        self.pending_requests = []
6        self.batch_timer = None
7        
8    async def add_request(self, csi_data, callback):
9        """Add inference request to batch"""
10        request = {
11            'data': csi_data,
12            'callback': callback,
13            'timestamp': time.time()
14        }
15        
16        self.pending_requests.append(request)
17        
18        if len(self.pending_requests) >= self.max_batch_size:
19            await self.process_batch()
20        elif self.batch_timer is None:
21            self.batch_timer = asyncio.create_task(
22                self.wait_and_process()
23            )
24    
25    async def process_batch(self):
26        """Process current batch of requests"""
27        if not self.pending_requests:
28            return
29        
30        # Extract data and callbacks
31        batch_data = [req['data'] for req in self.pending_requests]
32        callbacks = [req['callback'] for req in self.pending_requests]
33        
34        # Process batch
35        batch_tensor = torch.stack(batch_data)
36        with torch.no_grad():
37            batch_results = self.model(batch_tensor)
38        
39        # Return results to callbacks
40        for i, callback in enumerate(callbacks):
41            await callback(batch_results[i])
42        
43        # Clear processed requests
44        self.pending_requests.clear()

// TEST: Verify batch processing improves overall throughput // TEST: Confirm batching maintains acceptable latency // TEST: Validate batch timer prevents indefinite waiting

#6.3 Hardware Interface Optimization

6.3.1 CSI Data Processing Optimization

Parallel Processing: Optimize CSI data collection and processing

1class OptimizedCSIProcessor:
2    def __init__(self, num_workers=4):
3        self.num_workers = num_workers
4        self.processing_pool = ProcessPoolExecutor(max_workers=num_workers)
5        self.data_queue = asyncio.Queue(maxsize=1000)
6        
7    async def start_processing(self):
8        """Start parallel CSI processing workers"""
9        tasks = []
10        for i in range(self.num_workers):
11            task = asyncio.create_task(self.processing_worker(i))
12            tasks.append(task)
13        
14        await asyncio.gather(*tasks)
15    
16    def process_csi_data(self, csi_data):
17        """CPU-intensive CSI processing in separate process"""
18        # Phase unwrapping
19        phase_unwrapped = np.unwrap(np.angle(csi_data), axis=-1)
20        
21        # Amplitude processing
22        amplitude_db = 20 * np.log10(np.abs(csi_data) + 1e-10)
23        
24        # Apply filters using optimized NumPy operations
25        filtered_phase = scipy.signal.savgol_filter(phase_unwrapped, 5, 2, axis=-1)
26        filtered_amplitude = scipy.signal.savgol_filter(amplitude_db, 5, 2, axis=-1)
27        
28        # Combine and normalize
29        processed = np.stack([filtered_amplitude, filtered_phase], axis=-1)
30        normalized = (processed - processed.mean()) / (processed.std() + 1e-10)
31        
32        return normalized

// TEST: Verify parallel processing improves CSI data throughput // TEST: Confirm worker processes handle errors gracefully // TEST: Validate processed data quality meets neural network requirements


#7. Deployment and Infrastructure

#7.1 Container Architecture

7.1.1 Docker Configuration

Multi-Stage Build: Optimize container size and security

1# Build stage
2FROM python:3.9-slim as builder
3
4WORKDIR /app
5COPY requirements.txt .
6RUN pip install --no-cache-dir --user -r requirements.txt
7
8# Production stage
9FROM python:3.9-slim
10
11# Install system dependencies
12RUN apt-get update && apt-get install -y \
13    libgl1-mesa-glx \
14    libglib2.0-0 \
15    libsm6 \
16    libxext6 \
17    libxrender-dev \
18    libgomp1 \
19    && rm -rf /var/lib/apt/lists/*
20
21# Copy Python packages from builder
22COPY --from=builder /root/.local /root/.local
23ENV PATH=/root/.local/bin:$PATH
24
25# Copy application code
26WORKDIR /app
27COPY . .
28
29# Create non-root user
30RUN useradd -m -u 1000 wifipose && \
31    chown -R wifipose:wifipose /app
32USER wifipose
33
34# Health check
35HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
36    CMD curl -f http://localhost:8000/health || exit 1
37
38EXPOSE 8000
39CMD ["python", "-m", "wifi_densepose.main"]

7.1.2 Kubernetes Deployment

Production Deployment Configuration:

1apiVersion: apps/v1
2kind: Deployment
3metadata:
4  name: wifi-densepose
5  labels:
6    app: wifi-densepose
7spec:
8  replicas: 3
9  selector:
10    matchLabels:
11      app: wifi-densepose
12  template:
13    metadata:
14      labels:
15        app: wifi-densepose
16    spec:
17      containers:
18      - name: wifi-densepose
19        image: wifi-densepose:latest
20        ports:
21        - containerPort: 8000
22        env:
23        - name: CUDA_VISIBLE_DEVICES
24          value: "0"
25        - name: LOG_LEVEL
26          value: "INFO"
27        resources:
28          requests:
29            memory: "2Gi"
30            cpu: "1000m"
31            nvidia.com/gpu: 1
32          limits:
33            memory: "4Gi"
34            cpu: "2000m"
35            nvidia.com/gpu: 1
36        livenessProbe:
37          httpGet:
38            path: /health
39            port: 8000
40          initialDelaySeconds: 60
41          periodSeconds: 30
42        readinessProbe:
43          httpGet:
44            path: /ready
45            port: 8000
46          initialDelaySeconds: 30
47          periodSeconds: 10

// TEST: Verify Docker container builds and runs correctly // TEST: Confirm Kubernetes deployment scales properly // TEST: Validate health checks and resource limits

#7.2 Monitoring and Observability

7.2.1 Metrics Collection

Prometheus Integration: Comprehensive metrics collection

1from prometheus_client import Counter, Histogram, Gauge, start_http_server
2
3class MetricsCollector:
4    def __init__(self):
5        # Performance metrics
6        self.inference_duration = Histogram(
7            'inference_duration_seconds',
8            'Time spent on neural network inference',
9            buckets=[0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0]
10        )
11        
12        self.pose_detection_count = Counter(
13            'pose_detections_total',
14            'Total number of pose detections',
15            ['confidence_level']
16        )
17        
18        self.active_persons = Gauge(
19            'active_persons_current',
20            'Current number of tracked persons'
21        )
22        
23        # System metrics
24        self.memory_usage = Gauge(
25            'memory_usage_bytes',
26            'Current memory usage in bytes'
27        )
28        
29        self.gpu_utilization = Gauge(
30            'gpu_utilization_percent',
31            'GPU utilization percentage'
32        )
33    
34    def record_inference_time(self, duration):
35        """Record neural network inference time"""
36        self.inference_duration.observe(duration)
37    
38    def start_metrics_server(self, port=8001):
39        """Start Prometheus metrics server"""
40        start_http_server(port)
41        logger.info(f"Metrics server started on port {port}")

// TEST: Verify metrics collection captures all key performance indicators // TEST: Confirm Prometheus integration works correctly // TEST: Validate metrics provide actionable insights


#8. Security and Compliance

#8.1 Data Security

8.1.1 Privacy-Preserving Design

Data Minimization: Collect only necessary data for pose estimation

1class PrivacyPreservingProcessor:
2    def __init__(self):
3        self.data_retention_days = 7  # Configurable retention period
4        self.anonymization_enabled = True
5        
6    def process_pose_data(self, raw_poses):
7        """Process poses with privacy preservation"""
8        if self.anonymization_enabled:
9            # Remove personally identifiable features
10            anonymized_poses = self.anonymize_poses(raw_poses)
11            return anonymized_poses
12        return raw_poses
13    
14    def anonymize_poses(self, poses):
15        """Remove identifying characteristics from pose data"""
16        anonymized = []
17        
18        for pose in poses:
19            # Remove fine-grained features that could identify individuals
20            anonymized_pose = {
21                'keypoints': self.generalize_keypoints(pose['keypoints']),
22                'confidence': pose['confidence'],
23                'timestamp': pose['timestamp'],
24                'activity': pose.get('activity', 'unknown')
25            }
26            anonymized.append(anonymized_pose)
27        
28        return anonymized
29    
30    async def cleanup_old_data(self):
31        """Automatically delete old data based on retention policy"""
32        cutoff_date = datetime.now() - timedelta(days=self.data_retention_days)
33        
34        # Delete old pose data
35        await self.database.delete_poses_before(cutoff_date)
36        
37        # Delete old CSI data
38        await self.database.delete_csi_before(cutoff_date)
39        
40        logger.info(f"Cleaned up data older than {cutoff_date}")

// TEST: Verify anonymization removes identifying characteristics // TEST: Confirm data retention policies are enforced automatically // TEST: Validate privacy preservation doesn't impact functionality


#9. Testing and Quality Assurance

#9.1 London School TDD Implementation

9.1.1 Test-First Development

Comprehensive Test Coverage: Following London School TDD principles

1import pytest
2import asyncio
3from unittest.mock import Mock, AsyncMock, patch
4import numpy as np
5import torch
6
7class TestPoseEstimationPipeline:
8    """Test suite following London School TDD principles"""
9    
10    @pytest.fixture
11    def mock_csi_data(self):
12        """Generate synthetic CSI data for testing"""
13        return np.random.complex128((3, 3, 56, 100))  # 3x3 MIMO, 56 subcarriers, 100 samples
14    
15    @pytest.fixture
16    def mock_neural_network(self):
17        """Mock neural network for isolated testing"""
18        mock_network = Mock()
19        mock_network.forward.return_value = torch.randn(1, 17, 3)  # Mock pose output
20        return mock_network
21    
22    async def test_csi_preprocessing_pipeline(self, mock_csi_data):
23        """Test CSI preprocessing produces valid output"""
24        # Arrange
25        processor = CSIProcessor()
26        
27        # Act
28        processed_data = await processor.preprocess(mock_csi_data)
29        
30        # Assert
31        assert processed_data.shape == (3, 3, 56, 100)
32        assert not np.isnan(processed_data).any()
33        assert not np.isinf(processed_data).any()
34        
35        # Verify phase unwrapping
36        phase_data = np.angle(processed_data)
37        phase_diff = np.diff(phase_data, axis=-1)
38        assert np.abs(phase_diff).max() < np.pi  # No phase jumps > π
39    
40    async def test_neural_network_inference_performance(self, mock_csi_data, mock_neural_network):
41        """Test neural network inference meets performance requirements"""
42        # Arrange
43        estimator = PoseEstimator()
44        estimator.neural_network = mock_neural_network
45        
46        # Act
47        start_time = time.time()
48        result = await estimator.neural_inference(mock_csi_data)
49        inference_time = time.time() - start_time
50        
51        # Assert
52        assert inference_time < 0.05  # <50ms requirement
53        assert result is not None
54        mock_neural_network.forward.assert_called_once()
55    
56    async def test_fall_detection_accuracy(self):
57        """Test fall detection algorithm accuracy"""
58        # Arrange
59        fall_detector = FallDetector()
60        
61        # Simulate fall trajectory
62        fall_trajectory = [
63            {'position': np.array([100, 100]), 'timestamp': 0.0},    # Standing
64            {'position': np.array([100, 120]), 'timestamp': 0.5},    # Falling
65            {'position': np.array([100, 180]), 'timestamp': 1.0},    # On ground
66            {'position': np.array([100, 180]), 'timestamp': 1.5},    # Still on ground
67        ]
68        
69        # Act
70        fall_detected = False
71        for pose in fall_trajectory:
72            result = fall_detector.analyze_pose(pose)
73            if result['fall_detected']:
74                fall_detected = True
75                break
76        
77        # Assert
78        assert fall_detected
79        assert result['confidence'] > 0.8

// TEST: Verify all test cases pass with >95% coverage // TEST: Confirm TDD approach catches regressions early // TEST: Validate integration tests cover real-world scenarios


#10. Acceptance Criteria

#10.1 Technical Implementation Criteria

  • CSI Processing Pipeline: Real-time CSI data collection and preprocessing functional
  • Neural Network Integration: DensePose model integration with <50ms inference time
  • Multi-Person Tracking: Robust tracking of up to 5 individuals simultaneously
  • API Implementation: Complete REST and WebSocket API implementation
  • Performance Targets: All latency and throughput requirements met

#10.2 Integration Criteria

  • Hardware Integration: Successful integration with WiFi routers and CSI extraction
  • External Service Integration: MQTT, webhook, and Restream integrations operational
  • Database Integration: Efficient data storage and retrieval implementation
  • Monitoring Integration: Comprehensive system monitoring and alerting

#10.3 Quality Assurance Criteria

  • Test Coverage: >90% unit test coverage, complete integration test suite
  • Performance Validation: All performance benchmarks met under load testing
  • Security Validation: Security measures tested and vulnerabilities addressed
  • Documentation Completeness: Technical documentation complete and accurate

// TEST: Verify all technical implementation criteria are met // TEST: Confirm integration criteria are satisfied // TEST: Validate quality assurance criteria through comprehensive testing